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Abstract We adapt our previous results for the “partition function” of the superintegrable
chiral Potts model with open boundaries to obtain the corresponding matrix elements of
e−αH , where H is the associated Hamiltonian. The spontaneous magnetization Mr can be
expressed in terms of particular matrix elements of e−αH Sr

1e−βH , where S1 is a diagonal
matrix. We present a conjecture for these matrix elements as an m by m determinant, where
m is proportional to the width of the lattice. The author has previously derived the sponta-
neous magnetization of the chiral Potts model by analytic means, but hopes that this work
will facilitate a more algebraic derivation, similar to that of Yang for the Ising model.

Keywords Statistical mechanics · Lattice models · Transfer matrices

1 Introduction

In a previous paper [1], we obtained the partition function Z̃Q (here referred to as Z̃p) of
the superintegrable chiral Potts model with open boundary conditions. It is a simple product
of elements of two-by-two matrices, reflecting the fact that there is a reduced representation
in which the transfer matrices have a direct product structure, similar to that of the Ising
model [2].

Very recently, we have considered the problem of calculating the spontaneous magneti-
zation M of the square lattice Ising model [3]. We used the method of Yang [4] and defined
M in terms of the partition function ˜W on a cylindrical lattice of L columns with fixed-spin
boundary conditions on the upper and lower rows, with a single-spin operator S1 acting on a
spin located within the lattice. For convenience, we took the limit when the transfer matrix
could be replaced by the exponential of an associated Hamiltonian.

The Clifford algebra technique of Kaufman [5] can still be applied to this system, so that
˜W can be calculated as the square root of an L-dimensional determinant. This can be further
reduced to a determinant (without the square root) of dimension approximately L/2.
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Here we write down corresponding definitions of ˜W for the N -state superintegrable chi-
ral Potts model, which reduces to the Ising model when N = 2. We conjecture in (7.1)–(7.3)
that ˜W is also given by a determinant of dimension smaller than L, being a fairly immediate
generalization of that for the Ising case. If true, this is an exact formula for finite lattices, con-
taining three additional arbitrary parameters α,β, x in addition to N,L and the labels p,q

of the appropriate sub-spaces. It is therefore easy to test numerically, and we have tested it
to 60 or more digits of accuracy for various small values of N,L (up to N + L = 10).

If this conjecture is indeed true, then the spontaneous magnetization of the superinte-
grable chiral Potts model is given by the expression (7.11) below. This necessitates taking
the limit L → ∞. As yet we have not done this, but we have observed numerically that
(7.11) does indeed appear to converge to the known result (5.5). The author has previously
derived (7.11) by analytic methods [6, 7] that apply in the large-lattice limit, but it would
still be interesting to have an algebraic derivation that could give greater insight into the
properties of the model on a finite lattice.

2 Partition Function

2.1 Definition

The model is defined on the square lattice, rotated through 45◦, with M + 1 horizontal rows,
each containing L spins, as in Fig. 1.

We impose cylindrical boundary conditions, so that the last column L is followed by the
first column 1. At each site i there is a spin σi , taking the values 0,1, . . . ,N − 1. The spins
in the bottom row are fixed to have value a, those in the top row to have value 0. Adjacent
spins σi, σj on southwest to northeast edges (with i below j ) interact with Boltzmann weight
W(σi − σj ); those on southeast to northwest edges with weight W(σi − σj ).

These W,W are the Boltzmann weight functions:

W(n) = W(n + N) = μn

n
∏

j=1

(1 − ωjy)/(1 − ωjx),

W(n) = W(n + N) = μ−n

n
∏

j=1

(ω − ωjx)/(1 − ωjy),

(2.1)

where ω = e2π i/n, x and y are complex parameters, and

μN = (xN − 1)/(yN − 1). (2.2)

An important associated parameter is

k′ = (xN − 1)(yN − 1)/(yN − xN). (2.3)

The partition function, which depends on a, is

Za =
∑

σ

∏

〈i,j 〉
W(σi − σj )

∏

〈i,j 〉
W(σi − σj ), (2.4)

the products being over all edges of the two types. The sum is over all values of all the free
spins. The partition function can be written as

Za = u†
aT

Mu0, (2.5)
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Fig. 1 The square lattice L
turned through 45◦

where T is the row-to-row transfer matrix, with elements

Tσ,σ ′ =
L

∏

i=1

W(σi − σ ′
i+1)W(σi − σ ′

i ), (2.6)

σ being the set of all spins σ1, . . . , σL in one row, and σ ′ being the set in the row above.
Thus T is an NL by NL matrix. The vector ua is of dimension NL, with entries

(ua)σ =
{

1 if σ1 = · · · = σL = a,
0 otherwise.

(2.7)

The superintegrable chiral Potts model is a special case of the more general solvable
chiral Potts model, which satisfies the star-triangle relation [8]. This ensures that two transfer
matrices T ,T ′, with different values of x, y, but the same value of k′, commute.

2.2 The Spin-Increment Matrix R

Let R be the NL by NL matrix with entries

Rσ,σ ′ =
L

∏

j=1

δ(σj , σ
′
j + 1), (2.8)

where δ(a, b) = 1 if a = b (modulo N ), else δ(a, b) = 0. Then pre-multiplying by R has the
effect of increasing all spins by 1 (modulo N ), hence Rua = ua+1 and R commutes with T :

RT = T R. (2.9)

For this reason it is natural to use the Fourier transform of ua :

vp = N−1/2
N−1
∑

a=0

ω−apua. (2.10)

taking p = 0, . . . ,N − 1. This p replaces the Q of [1, 9]. Then

Rvp = ωpvp. (2.11)

If we also define

Z̃p =
N−1
∑

a=0

ωpaZa, (2.12)
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then

Z̃p = N1/2v†
pT Mu0

=
N−1
∑

q=0

v†
pT Mvq. (2.13)

From (2.9), we can replace T M in the summand by R−1T MR, and from (2.11) this is equiv-
alent to multiplying by ωq−p . This in turn means the summand must vanish unless q = p,
so

Z̃p = v†
pT Mvp. (2.14)

2.3 The Sub-Space Vp

Following the observations of Albertini et al. [10], we showed in [1, 9] that if one operates
on vp by any product of matrices T , with different values of x, y but the same value of k′,
then all the vectors generated lie in a vector space Vp , where p = 0, . . . ,N − 1. For any
vector v in Vp ,

Rv = ωpv. (2.15)

We also showed that the transfer matrices satisfied a functional relation that determined
their eigenvalues, and derived the result (2.24) for the partition function Z̃p .

If

m = mp = integer part of

[

(N − 1)L − p

N

]

, (2.16)

then there are just 2m distinct eigenvalues. What we have not shown, but believe to be true,
is that each such eigenvalue occurs just once, so that Vp is of dimension 2m. Certainly, by
continuity from the case k′ = 0, the largest eigenvalue (which is the one we most often
consider) occurs just once.

For the case when p = 0 and L divides by N , Au-Yang and Perk have recently obtained
the eigenvectors explicitly [11].

Two vectors v,w in different spaces Vp , Vp (with q �= p) are necessarily orthogonal, i.e.
v†·w = 0.

Define

P (zN) = z−p

N−1
∑

n=0

ω(L+p)n(zN − 1)/(z − ωn)
L
. (2.17)

Then P (w) = Pp(w) is a polynomial in w of degree m. Let its zeros be w1, . . . ,wm and
define θ1, . . . , θm = θ(p,1), . . . , θ(p,m) by

cos θj = cos[θ(p, j)] = (1 + wj)/(1 − wj), 0 < θi < π, (2.18)

for j = 1, . . . ,m. Set

G = (xNyN − 1)/(yN − xN), (2.19)

g = N(1 − x−1)/(1 − x−N), (2.20)
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define the two-by-two matrices

S =
(

1 0
0 −1

)

, C =
(

0 1
1 0

)

, (2.21)

F(x, y, θ) = 1 − x−N

2k′
[

GI2 + (1 − k′ cos θ)S − k′ sin θC
]

, (2.22)

I2 being the identity matrix, and set

D(cos θ) = (1 0 )·F(x, y, θ)
M·

(

1
0

)

(2.23)

then in [1] we find that

Z̃p = gLMx−MpD(cos θ1)D(cos θ2) · · ·D(cos θm). (2.24)

3 The Hamiltonian Limit

Take

μ = e−2ε (3.1)

and consider the limit when ε → 0. Then to first order in ε

x = y = 1 + 2k′ε, (3.2)

W(n) = 1 − 2nε, W(n) = 2k′ε/(1 − ω−n) (3.3)

for 0 < n < N , while W(0) = W(0) = 1. Noting that

N − 1 − 2j = 2
N−1
∑

n=1

ωnj

1 − ω−n
(3.4)

for 0 ≤ j < N , it follows that

T = [1 − (N − 1)Lε]I − εH, (3.5)

where I is the identity matrix and

H = −2
L

∑

j=1

N−1
∑

n=1

(Zn
j Z

−n
j+1 + k′Xn

j )/(1 − ω−n). (3.6)

This is the Hamiltonian associated with the transfer matrix T . Since all transfer matrices
with the same value of k′ commute, they also commute with H. Here Zj ,Xj are the NL by
NL matrices of [10], with elements

(

Zj

)

σ,σ ′ = ωσj

L
∏

m=1

δ(σm,σ ′
m), (3.7)

(

Xj

)

σ,σ ′ = δ(σj , σ
′
j + 1)

L
∏

n=1

*
δ(σn, σ

′
n), (3.8)
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the ∗ on the last product indicating that it excludes the case n = j .
The Hamiltonian H is known to have very special properties. In particular Au-Yang and

Perk showed that it satisfies the “Onsager algebra” [12].
Still working to first order in ε, we obtain

g = 1 + (N − 1)k′ε,

(1 − x−N)G

2k′ = 1 − N(1 + k′)ε,

F (x, y, θ) = [1 − N(1 + k′)ε]I2 + Nε
[

(1 − k′ cos θ)S − k′ sin θC
]

.

Now we take

ε = α/M, (3.9)

and let M → ∞, keeping α fixed. Then

F(x, y, θ)M → exp{Nα[−(1 + k′)I2 + (1 − k′ cos θ)S − k′ sin θC]} (3.10)

and from (3.5),

T M → e−(N−1)Lα exp(−αH). (3.11)

From (2.23) and (2.24), it follows that

v†
p exp(−αH)vp = e−μαD(cos θ1) · · ·D(cos θm), (3.12)

where

μ = μp = 2k′p + (1 + k′)(mN − NL + L), (3.13)

D(cos θ) = (1 0 )· exp[−αF̃ (θ)]·
(

1
0

)

(3.14)

and F̃ (θ) is the two-by-two matrix

F̃ (θ) = −N(1 − k′ cos θ)S + Nk′ sin θC. (3.15)

3.1 The Two-by-Two Exponential

We can calculate the exponential in (3.14) of the two-by-two matrix −αF̃ (θ) in the obvious
way, by diagonalizing it, exponentiating, and then returning to the original basis. If we define

λ = λ(θ) = (1 − 2k′ cos θ + k′2)1/2,

up(α, θ) = cosh(Nαλ) + 1 − k′ cos θ

λ
sinh(Nαλ)

(3.16)

vp(α, θ) = −k′ sin θ

λ
sinh(Nαλ)

wp(α, θ) = cosh(Nαλ) − 1 − k′ cos θ

λ
sinh(Nαλ),

(3.17)
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then

exp[−αF̃ (θ)] =
(

up(α, θ) vp(α, θ)

vp(α, θ) wp(α, θ)

)

. (3.18)

Hence

D(cos θ) = up(α, θ) (3.19)

and (3.12) becomes

v†
p exp(−αH)vp = e−μpαup(α, θ1) · · ·up(α, θm). (3.20)

4 Reduced Representation of H

We consider some basis of the 2m-dimensional vector space Vp and label the vectors by
s = {s1, . . . , sm}, where each si takes the values 1 or −1. We can think of the si as “Ising
spins”. Thus there are 2m vectors vs = v

p
s = v(s1, . . . , vm), each of dimension NL.

In [1] we showed that we can choose the vectors vs so that vp above is

vp = v(1,1, . . . ,1), (4.1)

and

Hv(s1, . . . , sm) =
⎡

⎣μ − N

m
∑

j=1

(1 − k′ cos θj )sj

⎤

⎦v(s1, . . . , sm)

+ Nk′
m

∑

j=1

sin θjv(s1, . . . ,−sj , . . . , sm). (4.2)

Defining 2m by 2m matrices Sj ,Cj by

(Sj )s,s′ = sj

m
∏

n=1

δ(sn, s
′
n), (4.3)

(Cj )s,s′ = δ(sj ,−s ′
j )

m
∏

n=1

*δ(sn, s
′
n), (4.4)

where again the ∗ means that the term n = j is excluded from the product, we see that with
respect to this basis the Hamiltonian H is now

H = μp − N

m
∑

j=1

[(1 − k′ cos θj )Sj − k′ sin θjCj ], (4.5)

which is (2.20) of [1]. This is consistent with our result (3.12) above.
From (3.13), (4.5), H is linear in k′. Set

H = H0 + k′H1, (4.6)
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H0,H1 being independent of k′, and define

κ(s) =
m

∑

j=1

(1 − sj )/2, (4.7)

then κ(s) takes the integer values 0,1, . . . ,m. If we order the rows and columns of H with
increasing values of κ(s), then H0 is diagonal and H1 is block tri-diagonal, with non-zero
entries only when |κ(s) − κ(s ′)| ≤ 1.

From (4.5), H is a direct sum of m two-by-two matrices. Similarly, if we define the
two-by-two matrix

Uj =
(

up(α, θj ) vp(α, θj )

vp(α, θj ) wp(α, θj )

)

, (4.8)

then exp(−αH) is the direct product

exp(−αH) = e−rαU1 ⊗ U2 ⊗ · · · ⊗ Um. (4.9)

Let |0〉 be the 2m-dimensional vector whose elements s are zero except for the element
s1 = 1, s2 = 1, . . . , sm = 1, which is unity, i.e.

|0〉 =
(

1
0

)

⊗
(

1
0

)

⊗ · · · ⊗
(

1
0

)

. (4.10)

This is the representative of the NL-dimensional vector vp . If 〈0| is the transpose of |0〉,
then

v†
pe−αHvp = 〈0|e−αH |0〉 (4.11)

and (3.20) follows immediately.
The derivation of [1, 9] does not exclude the possibility that the basis vectors vs depend

on the parameter k′. However, all studies for small N,L agree with the hypothesis that they
are (or at least can be chosen to be) independent of k′. This is consistent with the fact that
both H and H are linear in k′.

5 The Spontaneous Magnetization

Consider the lattice of Fig. 1 and take a = 0, so all upper and lower boundary spins are fixed
to be zero. Let ζ be the spin on a site deep inside the lattice. Then in the usual way we can
define the order parameters of the chiral Potts model as

Mr = 〈ωrζ 〉 (5.1)

for r = 1, . . . ,N − 1. Here 〈f (ζ )〉 denotes the usual statistical mechanical average

〈f (ζ )〉 = Z−1
0

∑

σ

f (ζ )
∏

〈i,j 〉
W(σi − σj )

∏

〈i,j 〉
W(σi − σj ) (5.2)

for any function f . We take the limit when the lattice is infinitely large, so L,M → ∞, and
ζ is infinitely far from the boundaries.
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The W,W products are unchanged by incrementing all spins by one, so if we imposed
toroidal boundary conditions, then it would be true that

〈f (ζ + 1)〉 = 〈f (ζ )〉 (5.3)

and this would imply that Mr = ωrMr . Hence for r �= 0 (mod N ) we would necessarily
have Mr = 0.

At high temperatures (k′ ≥ 1), this is true also for our fixed-spin boundary conditions
when we take the large-lattice limit. However, at lower temperatures (0 < k′ < 1) the system
has ferromagnetic long-range order and “remembers” the boundary conditions even in the
limit of ζ deep inside a large lattice, and

0 < Mr < 1. (5.4)

In fact we know Mr . In 1989 Albertini et al. [10] conjectured that

Mr = (1 − k′2)r(N−r)/2N2

(5.5)

and the author was able to derive this formula in 2005 [6, 7]. The method used was analytic,
depending on the star-triangle relation, functional relations and analyticity properties.

When N = 2 the chiral Potts model (both superintegrable and general) reduces to the
Ising model, whose partition function was obtained by Onsager in 1944 [13]. Onsager an-
nounced at a conference in Florence in 1949 that he and Kaufman had solved the sponta-
neous magnetization and obtained M1 = (1 − k′2)1/8

[14], but the first published derivation
of that result was given by Yang in 1952 [4].

Onsager and Yang’s methods were much more algebraic, determining the eigenvalues of
the transfer matrix T , and certain elements of the eigenvectors. It would be interesting to
obtain a derivation of Mr that parallels Yang’s. The object of this paper is to suggest how
one may make progress in that direction.

We introduce the NL by NL diagonal matrix Sr with elements

(Sr )σ,σ ′ = ωrσ1

L
∏

j=1

δ(σj , σ
′
j ). (5.6)

Note that, for all integers p and r ,

Srvp+r = vp, vp
†Sr = v†

p+r . (5.7)

Because of the cylindrical boundary conditions, we can take the spin ζ to be in any
column, so we choose it to be in column 1. Then (5.1) can be written

Mr = W/Z0, (5.8)

where

W = u
†
0T

jSrT
M−ju0, Z0 = u

†
0T

Mu0, (5.9)

j being the number of rows below ζ .
From (2.10) and (2.12),

W = N−1
N−1
∑

p,q=0

v†
pT jSrT

M−j vq, Z0 = N−1
N−1
∑

p=0

v†
pT Mvp. (5.10)
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Since R commutes with T and

RSr = ω−rSrR, (5.11)

it follows from (2.15) that the first summand in (5.10) vanishes unless q = p + r , so

W = N−1
N−1
∑

p=0

v†
pT jSrT

M−j vp+r , (5.12)

interpreting p + r as p + r to modulo N .
For 0 < k′ < 1 and L is large, the N largest eigenvalues of T are asymptotically degener-

ate, their ratios being of the form 1 + O(e−Lν), ν being a measure of the interfacial tension.
However, there is one and only one of these eigenvalues in each of the vector spaces Vp , for
p = 0, . . . ,N − 1.

Since T and H commute and H is hermitian, the eigenvectors ψp corresponding to these
eigenvalues are unitary, so

ψ†
pψq = δp,q . (5.13)

5.1 Asymptotic Degeneracy

In each sub-space Vp there is single largest eigenvalue �p of the transfer matrix T and these
eigenvalues are asymptotically degenerate, in the sense that for large L there is a common
value � such that

�−1�p = 1 + O(e−Lsp ), (5.14)

i.e. the ratios of the �p approach unity exponentially rapidly.
This can be seen by considering the series expansion of the eigenvector ψq in powers

of k′. Since T , H commute, we can look at the eigenvectors of H, corresponding to the most
negative (ground state) eigenvalue.

When k′ = 0, H = H0, where

H0 = −2
L

∑

j=1

N−1
∑

n=1

Zn
j Z

−n
j+1/(1 − ω−n). (5.15)

This is diagonal, with minimum eigenvalue −2L, when all the L spins are equal. Thus
from (2.7), u0, . . . , uN−1 are ground state eigenvectors.

We can start from one of these eigenvectors and use standard linear perturbation theory to
develop a series expansion for the eigenvector of H, starting from the initial eigenvector ua .
This entails changing successively more of the spins from value a to some other value. It
will work until all of the spins are changed, when for the first time we come to another of
the eigenvectors of H0. At that stage, and only at that stage, one would have to resolve the
degeneracy of the initial eigenvalues. This means that naive perturbation theory works to
order k′L. The calculation only depends on a in so far as it involves the differences (mod N )
of the L spins from a. Thus to this order the eigenvalue is independent of the initial choice
of a. This is true also of the eigenvalues of T , so �p = �, � being the common eigenvalue,
in agreement with (5.14).

Also, if ψ ′
a is this near-eigenvector, then

ψ ′
a

†
ub = ξδa,b, (5.16)
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where ξ is independent of a and b, and to this order the actual eigenvectors are

ψp = N−1/2
N−1
∑

a=0

ω−apψ ′
a (5.17)

it follows that, for all p,

ψ†
pvp = ξ. (5.18)

In the limit of j,M − j,L large we can replace T j in (5.10), (5.12) by ψp�jψ†
p (with

the appropriate value of p), and T M−j by ψp�M−jψ†
p , giving

v†
pT jSrT

M−j vp+r = eM�ξ ∗ξψ†
pSrψp+r , v†

pT Mvp = eM�ξ ∗ξ (5.19)

ξ ∗ being the complex conjugate of ξ and

ψ†
pSrψp+r = independent of p. (5.20)

Thus W,Z0 are the two expressions in (5.19), respectively, and

Mr = ψ†
pSrψp+r . (5.21)

5.2 Expressions in Terms of H

Rather than continue to work with the transfer matrix T , we find it convenient to instead
use the negative exponential of the Hamiltonian and to replace T j , T M−j in (5.12) by e−αH,
e−βH, and T M in (5.10) by e−αH (with a different α), making them

W = N−1
N−1
∑

p=0

W̃p,q, Z0 = N−1
N−1
∑

q=0

Z̃q, (5.22)

where now, setting q = p + r ,

˜Wp,q = ˜Wp,q(α,β, x) = v†
pe−αHe−ρJSre−βHvq (5.23)

Z̃p = Z̃p(α) = v†
pe−αHvp (5.24)

and

x = e−2Nρ. (5.25)

We have introduced the matrix factor e−ρJ immediately pre-multiplying Sr in (5.23).
Here

J = H0 + L(N − 1)I (5.26)

is a diagonal matrix whose entries are 0,2N,4N, . . . , 2N [(N − 1)L/N ]. Hence
˜Wp,q(α,β, x) is a polynomial in x of degree [(N − 1)L/N ]. This naturally manifests it-
self in the following working and provides a useful check against errors.

We can think of these Z̃p , W̃p,q as Hamiltonian partition functions. They are rather sim-
pler than the original partition functions to work with.
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When ρ → +∞, then x → 0 and e−ρJ → vpvp
†, so, using (5.7),

˜Wp,q(α,β,0) = v†
pe−αHvpvq

†e−βHvq

= Z̃p(α)Z̃q(β), (5.27)

˜Wp,q(α,0, x) = Z̃p(α), ˜Wp,q(0, β, x) = Z̃q(β). (5.28)

These relations also provide useful checks on our subsequent calculations.
Because H, T commute, they have the same ground-state eigenvectors ψp . In the limit

when ρ = 0, and α,β,L → ∞, we obtain

˜Wp,q(α,β,1) = e−(α+β)�ξ ∗ξψ†
pSrψq,

Z̃p(α) = e−α�ξ ∗ξ.
(5.29)

So from (5.20), (5.21),

Mr = lim
α,β,L→∞

˜Wp,q(α,β,1)

(Z̃p(2α)Z̃q(2β))1/2
(5.30)

for any p,q such that 0 ≤ p,q < N and q = p + r , mod N .
From (3.20) and (5.24),

Z̃p(α) = e−μpαup(α, θ1) · · ·up(α, θm). (5.31)

It remains to calculate ˜Wp,q(α,β, x). We have not done this, but the rest of this paper is
concerned with presenting a conjecture for it as a determinant of dimension not greater than
(N − 1)L/N . This expression agrees with the known N = 2 result for the Ising model, and
indeed is a fairly immediate generalization of that result. It has the properties (5.27), (5.28),
and has been extensively tested numerically for small values of N,L.

5.3 Expressions in Terms of H

First we remark that if v ∈ Vp+r and v′ = Srv, then from (2.15), Rv′ = ωpv′, so v′ is a
candidate for the sub-space Vp . However, in general it does not lie within this sub-space.
Even so, we can define a matrix Sr

red of dimension mp by mp+r by

(

Sr
red

)

s,s′ = (

vp
s

)†
Srv

p+r

s′ . (5.32)

These elements depend on N,L,p, r . They are of course independent of α and β . From our
remarks at the end of Sect. 4 that we expect the vs to be independent of k′, the same must
be true of the elements of Sr

red.
We can then write (5.23) as

W̃p,q = 〈0|e−αH e−ρJSr
rede−βH ′ |0〉,

Z̃p = 〈0|e−αH |0〉,
(5.33)

where H ′ is the H of (4.5), (4.6) but with p replaced by p + r , and

J = H0 + L(N − 1)I = N

m
∑

j=1

(I − Sj ) (5.34)
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is the diagonal matrix with elements 2Nκ(s) in position (s, s).
Let

ũp(1, α, θ) = up(α, θ), ũp(−1, α, θ) = vp(α, θ) (5.35)

and set

q = p + r, m′ = mq, μ′ = μq, θ ′
j = θ(q, j). (5.36)

Then we can write these equations more explicitly as

˜Wp,q(α,β, x) = e−αμ−βμ′ ∑

s,s′
ũp(s1, α, θ1) · · · ũp(sm,α, θm)

× xκ(s)
(

Sr
red

)

s,s′ ũq(s
′
1, β, θ ′

1) · · · ũq(s
′
m,β, θ ′

m′), (5.37)

and

Z̃p(α) = e−αμup(α, θ1) · · ·up(α, θm). (5.38)

The non-zero elements (s, s ′) of the 2m by 2m′
matrix Sr

red satisfy κ(s) = κ(s ′). If we also
order the rows and columns of Sr

red in increasing value of κ(s), then this matrix is block-
diagonal.

We do not have a direct derivation of Sr
red, though of course it can be calculated numeri-

cally for small values of N,L from (5.32). In principle it can be calculated from our conjec-
ture (7.2) below. If s is the m by m′ diagonal blocks of Sr

red in the block κ(s) = κ(s ′) = 1,
h is the corresponding m by m block of H1, and h′ the m′ by m′ block of H ′

1, then this
conjecture implies that the double commutator h·h·s − 2h·s·h′ + s·h′·h′ is of rank one. This
was a key initial encouraging observation in our search for the expression (7.2).

6 The Orthogonal Matrix B

Before stating our conjecture, we define an m by m′ real orthogonal matrix B = Bpq whose
elements involve the θ1, . . . , θm defined by (2.17), (2.18), as well as the θ ′

1, . . . , θ
′
m′ defined

similarly, but with p replaced by q and m by m′. We must have p �= q .
We define B = Bp,q to be the matrix with elements

Bi,j = f (p,q, i)f (q,p, j)/(cos θi − cos θ ′
j ), (6.1)

where we choose the functions f (p,q, i), f (q,p, j) to ensure that

BT B = I if m ≥ m′, BBT = I if m ≤ m′, (6.2)

I again being the identity matrix, of dimension min(m,m′).

6.1 The Case p < q

From (2.16), if p < q , then m ≥ m′ and we want BT B = I . From (6.1),

(BT B)i,j =
m

∑

n=1

f (q,p, i)f (p, q,n)2f (q,p, j)

((cos θn − cos θ ′
i )(cos θn − cos θ ′

j ))

= f (q,p, i)f (q,p, j)

cos θ ′
j − cos θ ′

i

m
∑

n=1

{

f (p,q,n)2

cos θ ′
i − cos θn

− f (p,q,n)2

cos θ ′
j − cos θn

}

(6.3)

for i �= j .
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We want the RHS of (6.3) to vanish for i �= j . Consider the functions

P̃p(c) =
m

∏

i=1

(c − cos θi) = N−L(c + 1)mP

(

c − 1

c + 1

)

, (6.4)

F(c) =
m

∑

n=1

f (p,q,n)2

c − cos θn

. (6.5)

The first is a known function, given by (2.17) and (2.18), the second is of the form
Rp(c)/P̃p(c), Rp(c) being a polynomial of degree m − 1. We want there to exist constants
γ, γ ′ (dependent on p,q) such that

F(c) = γ ′ + γ P̃q(c)/P̃p(c), (6.6)

since then F(cos θ ′
i ) = F(cos θ ′

j ) = γ ′ and the RHS of (6.3) vanishes. This implies that

Rp(c) = γ ′P̃p(c) + γ P̃q(c). (6.7)

From (2.16), m and m′ = mq differ by at most one, so m′ +1 ≥ m ≥ m′. Whether m = m′
or m = m′ + 1, we can always choose γ ′ to ensure that the RHS of (6.7) is a polynomial of
degree m − 1. Then the equation defines Rp(c) (to within the factor γ ) and the parameters
f (p,q,n).

From (6.5), f (p,q,n)2 is the residue of F(c) at the pole c = cos θn, so from (6.6)

f (p,q,n)2 = γ P̃q(cos θn)/�p(cos θn), (6.8)

where

�p(c) = d

dc
P̃p(c). (6.9)

For given p,q , this determines f (p,q, i) to within a factor independent of i (but possibly
dependent on p and q). To determine this factor we need to consider the case when i = j in
the first of (6.3), which gives

f (p,q, i)2G(cos θ ′
i ) = 1, (6.10)

where

G(c) =
m

∑

n=1

f (p,q,n)2/(c − cos θn)
2. (6.11)

From the equations above,

G(c) = − d

dc
F (c) = −γ

d

dc

P̃q(c)

P̃p(c)
. (6.12)

Since P̃q(cos θ ′
i ) = 0, this gives

f (q,p, i)2 = 1

G(cos θ ′
i )

= − P̃p(cos θ ′
i )

γ�q(cos θ ′
i )

. (6.13)
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The parameter γ is at our disposal. We observe numerically that for small values of n

and L we can ensure that f (p,q,n)2, f (q,p, i)2 are real and positive by choosing

γ = 1. (6.14)

We can then take f (p,q,n), f (q,p, i) to be positive, for all n, i. The matrix B is then
defined by (6.1), (6.8), (6.13), (6.14). It is real and has the orthogonality property BT B = I .
If m = m′ this implies BBT = I .

6.2 The Case p > q

We can combine (6.8), (6.13) into a single formula by defining

ε(p, q) = 1 if p < q, ε(p, q) = −1 if p > q. (6.15)

Then both equations are contained in

f (p,q, i) =
[

ε(p, q)P̃q(cos θi)/�p(cos θi)
]1/2

, (6.16)

for p �= q .
We can now extend the formula (6.1) to all p �= q . It is readily observed that

Bq,p = −BT
p,q . (6.17)

We have just established that BT B = I if p < q . It follows that BBT = I if p > q (which
implies m ≤ m′). This is the desired orthogonality property.

We remark that we have only conjectured (based on numerical calculations) that the RHS
of (6.16) is real and can be chosen positive. If this were to fail the above formulae would
still apply, but Bpq would be a complex orthogonal matrix.

6.3 The Matrix E

We shall also need the m by m diagonal matrix Epq , with entries

[Ep,q]i,j = e(p, q, i) δi,j , (6.18)

where the function e(p, q, i) is defined as follows, for 0 ≤ p,q < N :

e(p, q, i) = sin θi if p < q and m > m′

= tan(θi/2) if p < q and m = m′

= 1/ sin θi if p > q and m < m′

= cot(θi/2) if p > q and m = m′.

(6.19)

Since m − 1 ≤ m′ ≤ m if p < q , and m + 1 ≥ m′ ≥ m if p > q , these equations cover all
cases; θi = θ(p, i) is again as defined in (2.18). The function e(q,p, i) is defined similarly,
but with p,q interchanged and θi replaced by θ ′

i = θ(q, i).
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7 The Conjecture for W

We return to considering the ˜Wp,q of (5.23), (5.33) and (5.37). Based on the calculation for
the Ising model [3, (7.9)], we conjecture that

˜Wp,q(α,β, x) = Z̃p(α)Z̃q(β)Dp,q(α,β), (7.1)

where Dp,q(α,β) is the m by m determinant

Dp,q(α,β) = det[Im − xXp(α)Ep,qBp,qXq(β)Eq,pBq,p] (7.2)

or equivalently the m′ by m′ determinant

Dp,q(α,β) = det[Im′ − xXq(β)Eq,pBq,pXp(α)Ep,qBp,q]. (7.3)

Again Im is the identity matrix, of dimension m and Xp(α) is the diagonal m by m matrix
whose entry in position (i, j) is

[Xp(α)]i,j = vp(α, θj )

up(α, θj )
δi,j . (7.4)

Note from (6.1) that each function f (p,q, i), f (q,p, j) occurs twice (i.e. as its square)
in (7.2) and (7.3), so the choice of the square roots in (6.16) is in fact irrelevant.

From (3.17) and (5.23), vp(α, θ) = 0 and Z̃p(α) = 1 if α = 0, so (7.1) does indeed
have the properties (5.27), (5.28). It is a fairly immediate generalization of (7.7) of [3] and
has been tested to high numerical accuracy (60 digits or more) for arbitrary k′, α,β and
all N,L,p,q such that 2 ≤ N , 3 ≤ L, N + L ≤ 10. We conjecture that it is true for all
N,L,p,q, x,α,β .

7.1 Consequences

Define

ap,j = {1 − k′eiθj }1/2, bp,j = {1 − k′e−iθj }1/2, (7.5)

where θ1, . . . , θm are given by (2.18). They depend on p. Again the function mp is defined
by (2.16) for 0 ≤ p < N , and m = mp , m′ = mq .

Then from (3.16),

λj = λ(θj ) = (1 − 2k′ cos θj + k′2)1/2 = ap,j bp,j ,

so from (5.31) and (3.17),

lim
α→∞

Z̃p(α)2

Z̃p(2α)
=

m
∏

j=1

(ap,j + bp,j )
2

4ap,j bp,j

. (7.6)

Also define quantities xp,j , not to be confused with the x of (5.25), by

xp,j = lim
α→∞

vp(α, θj )

up(α, θj )
= −k′ sin θj

λj + 1 − k′ cos θj

. (7.7)
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Then

xp,j = i
bp,j − ap,j

bp,j + ap,j

(7.8)

and

lim
α→∞

Z̃p(2α)

Z̃p(α)2
=

m
∏

j=1

(

1 + x2
p,j

)

. (7.9)

Let

Xp = lim
α→∞ Xp(α), (7.10)

so it is the diagonal matrix with diagonal elements xp,j . Taking the limits α,β → +∞ and
setting x = 1, it follows from (5.30), (7.1) that if q = p + r to modulo N , then

Mr = lim
L→∞

det(Im − XpEp,qBp,qXqEq,pBq,p)

{det(Im + X2
p)det(Im′ + X2

q)}1/2
(7.11)

where 0 ≤ p,q < N and 0 < r < N .
We have not been able to evaluate the RHS of (7.11) analytically. Even for the N = 2

Ising case discussed in [3], we do not directly evaluate (7.11), but rather the expression in
terms of square roots of L by L determinants that leads in that case to (7.11).1

We have conducted numerical experiments for various values of N,p,q and k′, and
observed that as L → ∞ the expression on the RHS of (7.11) does indeed approach the
known result (5.5), the error for finite L being of the order of k′L or smaller.

8 Summary

We have defined the Hamiltonian partition functions ˜Wp,q(α,β, x), Z̃p(α) by (5.23), (5.24)
and shown that the spontaneous magnetization Mr of the superintegrable chiral Potts model
is given by (5.30). For the general solvable chiral Potts model, Mr is independent of the
rapidities [7, p. 7]. The superintegrable model is obtained from the general by a special
choice of the rapidities (k′ being the same) [1, p. 5], so Mr is the same for both.2

By taking the Hamiltonian limit of the results of [1], we show that Z̃p(α) is given
by (5.38). We then conjecture that ˜Wp,q(α,β, x) is given in terms an m by m determinant
by (7.1). This is a natural generalization of the known result for the special case N = 2, i.e.
the Ising model [3].

If this is true (and all the numerical evidence suggests that it is) this is a huge simplifica-
tion, reducing the problem from exponential complexity to comparatively small polynomial
complexity. Even so, we have not been able to make the final step and to obtain Mr from
(7.11). We already know [6, 7] that Mr is given by (5.5), but it would be interesting to ob-
tain it by this more algebraic route. The matrices Bpq and (for m ≥ m′) Dp,q(α,β)Bp,q are
Pick matrices [15].

So there remain two things to do: to prove the conjecture (7.1) and to evaluate the
limit (7.11). The first is an algebraic problem, the second an analytic one. The fact that
(7.1) contains the additional parameters α,β, x should be helpful in establishing it.

1We do this by writing M2
r as the determinant of a Toeplitz matrix and using Szegő’s theorem.

2Note that the p,q of this paper are not rapidities.
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